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Abstract

This thesis discusses the basics of lattice QCD and the architecture
of modern hardware and software. This is later on used to compare the
performances of the Chroma, QDP++ & LibHadronAnalysis libraries to

the new GRID implementation, especially when it comes to
Meson Distribution Amplitude (MDA) calculations.
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1 Introduction
A lot of problems in all different scientific fields are studied with the support of the com-
putational power of supercomputers. Besides the simulations in molecular dynamics,
climate models and astronomy those machines are also used for Quantum Chromody-
namics (QCD) on the lattice. As the latter is often very time and resource consuming
and large computer clusters are expensive to purchase and maintain, the biggest task
is to use software and hardware as efficiently as possible. In the case of lattice QCD
this means that the given problem has to be divided in such a way that it can be dis-
tributed among many cores and be processed in parallel in order to achieve a minimal
execution time. As this is a complex task and presumes a deep understanding of the
matter, there is software available that allows the user to formulate the problem in
terms of comprehensive code and deals with the job of parallelization on its own.
This thesis will guide the reader through the process of developing and testing optimized
code for new computer architectures. This task implies the analysis of the currently
used software and the newly developed C++ library: GRID. Therefore, benchmarks
are written and run for the different libraries in order to test and compare the perfor-
mances for specific cases.
The thesis starts with a few notes on lattice QCD and introduces the Meson Distribu-
tion Amplitude (MDA) in chapter 2 that will later serve as a case study. The hardware,
namely the QPACE 3 supercomputer and especially its processors are discussed in
chapter 3. After a brief look at the libraries (Chroma, QDP++ & LibHadronAnalysis)
currently used for the calculations in chapter 4, the new library GRID is introduced,
containing information about the implementation and its application in chapter 5.
With the knowledge from those previous chapters the old and new libraries can then
be compared for specific tasks in chapter 6 which is afterwards used to implement the
computation of the MDA using GRID in chapter 7.
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2 Lattice QCD
Since the first publication on this subject by Kenneth Wilson in 1974[1] the field of
lattice Quantum Chromodynamics (lattice QCD) provides a wide range of methods for
the numerical calculation of hadron properties. The idea behind this theory is to dis-
cretise the continuous four dimensional spacetime and thereby construct a hypercubic
lattice (with spacing a) with a finite volume. A quark can only be placed on the sites
of this grid and is created and annihilated through the corresponding operators. The
gluons are represented by links Ux,µ in between the sites. Figure 1 shows the general
structure of such a lattice. As such a construct is finite in every spacetime direction
(typically ∼ 84 sites), one establishes periodic conditions on the hyperplane boundaries
for the gauge fields and anti-periodic boundary conditions for the fermions. The path
integrals emerging from this theory can then be evaluated via Monte Carlo methods
and importance sampling.
This chapter introduces common lattice QCD calculations, especially correlation func-
tions and derivatives which will later be used for benchmarking. Those can then be
used to find an efficient way of computing the Meson Distribution Amplitude (MDA).

Figure 1: Two dimensional slice of the four dimensional lattice. Each site contains a
quark field ψ(x) and is connected to its neighbours via the gauge link Uµ(x).
The Pµν(x) is a so called plaquette which will not be discussed in this thesis
(source: [2, Figure 1]).

2.1 Correlation functions

Correlation or two-point functions (cf. figure 2) represent an important object in the
field of lattice QCD, e.g. for spectroscopic calculations. Consider the general form of
the correlator for an interpolating operator O(t) (following [3, Chapter 11.1]):
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Figure 2: A correlation function using NT = 32a and its corresponding fit (source: [3,
Figure 11.1]).

G(t, 0) = 1
Z
Tr

[
O(t)O(0)e−βH

]
(1)

where the partition function Z = Tr
[
e−βH

]
, H is the Hamiltonian and β = 1

kBT
= 1

T

(in simulations the Boltzmann constant is usually set to one). WithO(t) = eHtO(0)e−Ht

and the insertion of a complete set of eigenstates equation (1) becomes

G(t, 0) = 1
Z

∑
m,n

〈m|O(0)|n〉〈n|O(0)|m〉e−Ente−Em(NT−t) (2)

where En is the energy relative to the ground state. For large t the first excited state
dominates so that

G(t, 0) ∝ |〈0|O(0)|1〉|2
(
e−E1t + e−E1(NT−t)

)
(3)

After all these simplifications, the mass and energy can be obtained by fitting the
two-point function for various times t to the following function

E1 ≈ meff = lim
t→∞

acosh

[
G(t+ 1, 0) +G(t− 1, 0)

2 G(t, 0)

]
(4)

In order to get to a more vivid case, the operator O(x, t) = ψ(x, t)Γψ(x, t) (now with
space coordinates x) shall represent the source (for t = 0) and sink (t) of a meson in
the Wilson formalism with Γ being one of the Dirac matrices. The correlation function
can now be written as follows:
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G(t, 0) =
∑
x

〈O(x, t)O(0, 0)〉 (5)

=
∑
x

〈0|ψαi (x, t)Γijψαj (x, t)ψβk(0, 0)Γklψβl (0, 0)|0〉 (6)

In the second line, spin (i, j, k, l) and colour indices (α, β) have been explicitly de-
noted. Introducing the quark propagator

Sαβjk (x, t; 0, 0) = 〈0|ψαj (x, t)ψβk(0, 0)|0〉 (7)

the correlator becomes

G(t, 0) =
∑
x

Tr [S(x, t;x, t)Γ]Tr [S(0, 0; 0, 0)Γ]

−
∑
x

Tr [S(x, t; 0, 0)ΓS(0, 0;x, t)Γ]
(8)

The trace is taken over spin and colour indices. The anti-quark propagator can be
found using the identity S(0, 0;x, t) = γ5S

∗(x, t; 0, 0)γ5, which will be relevant for
section 6 where the second term of equation 8 will be further discussed. The first term
in equation 8 is often omitted as it is very sophisticated to calculate.

2.2 Covariant lattice Dirac operator

In the Wilson formalism the gauge potential Aµ(x) is replaced by gauge links Ux,µ
which are located between the sites x and x+ aµ̂ of the lattice. Their relation is given
by

Ux,µ ≡ U(x, x+ µ̂) = exp
[
igaAcµ(x)λc

]
(9)

where λc (c = 1, ..., 8) are the eight generators of SU(3) and g is the gauge coupling
constant (cf. [3, Chapter 5.1]). In order to provide gauge invariance those variables
must transform as

Ux,µ → G(x)Ux,µG−1(x+ aµ̂) (10)

The Dirac operator can then be discretised through (following [4, Chapter 2])

D(U) = γµDs,µ(U) +m (11)

(Ds,µ(U)ψ)x = 1
2a
(
Ux,µψx+aµ̂ − U †x−aµ̂,µψx−aµ̂

)
(12)
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where U † ≡ U(x + µ̂, x) is the reversed gauge link. The emerging fermion doubling
problem is solved by adding a term proportional to the Laplace operator ∆L as proposed
by Wilson [5]:

DW (U) = γµDs,µ(U)− r∆L (0 < r ≤ 1), D†W = γ5DWγ5 (13)

2.3 Meson Distribution Amplitude

In order to present an application for QCD simulations on the lattice, the Meson Distri-
bution Amplitude (MDA) shall be introduced here. This function contains information
about momentum sharing between the quark - anti-quark pair of the meson [6], e.g.
the pion (as discussed in [6][7]). It can be obtained through a Fourier transform of the
following term1:

MDA(x) =
∑
α,β

∑
A,B

∑
γ,δ

SABαβ (x)
(
γ5S

†γ5
)AB
γδ

(x) (14)

So the evaluation of equation (14) on a specific lattice site x is performed by taking
the trace over colours A and B for all possible spin index combinations α, β and γ, δ.
Additionally, each combination of quark propagators including their derivatives has to
be considered.

1The Fourier transform will be left out in the further discussion as it is not of any special interest in
this thesis.
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3 QPACE 3
The QCD Parallel Computing Engine 3 (QPACE 3) is a project of the universities
in Regensburg and Wuppertal, located at the Jülich Supercomputing Center (JSC).
It has been specifically designed for lattice QCD simulations. One special feature is
its high energy-efficiency2, that currently puts it among the 20 most energy-efficient
supercomputers in the world[8]. This chapter discusses the layout of QPACE 3 and the
most relevant attributes of its processors.

3.1 Architecture

Figure 3: One node consists of a In-
tel Xeon Phi 7210 (KNL),
two types of memory and
the Omni-Path Architecture
(source: [9, Chapter I.2]).

QPACE 3 consists of eight racks with
672 nodes in total. Each node contains
one Intel Xeon Phi 7210 (also called
Knights Landing / KNL), 48GB RAM
(racks 1-4) or 96GB RAM (racks 5-8)
and a 100Gb/s Omni-Path Host Fab-
ric Interface (HFI). Figure 3 shows the
layout of one KNL block. Other than
on the picture, the Omni Path is not
on the package but outside in the ver-
sion used for QPACE 3. The hardware
configuration set at boot time is using
the SNC-4 mode for the NUMA layout
and cache mode for the MCDRAM, which will be further discussed below.

3.2 Knights Landing

The KNL is the second generation of Intel’s Many Integrated Core (MIC) architecture
processors. Its purpose is to deliver hardware that is able to execute parallel tasks in
a very efficient way. Therefore it provides a multi-core architecture, high-bandwidth
memory and 512 bit vector instructions [9, Chapter I.2] 3.

3.2.1 Layout

The KNL basically consists of 36 tiles placed in a two-dimensional mesh, as can be
seen in figure 5. Each of those tiles contains two cores with two vector-processing units
(VPU) each and a shared 1 MB L2 cache (cf. figure 4).

2Energy-efficiency is measured as the ratio of performance over power (Floating point operations per
Watt).

3Information in this section was taken from chapter I.2. Knights Landing overview in [9].
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Figure 5: Schematic representation of KNL’s structure. Although 38 tiles are drawn
only 36 of them are active (source: [9, Chapter I.2]).

Figure 4: One tile of the KNL
consisting of two cores,
four VPU and a 1MB
L2 cache (source:
[9, Chapter I.2]).

If a core needs data which is not stored in
its local tile, it must communicate via the on-
die interconnect. In this case the information
needed travels across the mesh following the
YX-routing rule (first in the y direction and
then in x direction), forming a ring for every
full transaction. In order to achieve a better
performance several cluster modes can be ap-
plied: All-to-all, quadrant (or hemisphere) and
sub-NUMA (SNC-4 or SNC-2).
These modes basically differ in the way mem-
ory can be accessed. The all-to-all, quadrant
and hemisphere modes are Uniform Memory Access (UMA), which means that the la-
tency from any given core to any location in memory is essentially the same. Whereas
the SNC-4 and SNC-2 modes use Non-Uniform Memory Access (NUMA), so that small
core-memory distances result in a lower latency but larger distances in a higher latency
compared to the UMA modes. As the 2D mesh is divided into two (hemisphere/SNC-2)
or four (quadrant/SNC-4) regions, the NUMA modes can access memory faster which
is located in the same hemisphere/quadrant. Those statements are independent of the
memory type, MCDRAM or DDR.
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Figure 6: The different instruction sets of Sandy Bridge, Haswell and Knights Landing
(source: [9, Chapter I.2]).

3.2.2 MCDRAM & DDR4

The KNL has two different types of memory: a high-bandwidth Multi-Channel Dynamic
RAM (MCDRAM) and a high-capacity DDR4 RAM. The eight MCDRAM devices
provide 16 GB of memory (2 GB each) and an aggregate Streams Triad bandwidth of
over 450 GB/s. It either serves as cache for the DDR, additional memory in the same
address space as DDR or a mixture of both, according to the mode (cache/flat/hybrid)
set at boot time.
The DDR is composed of six Dual Inline Memory Modules (DIMM) with clock speeds
of up to 2400 MHz and capacity of 8 GB each. The aggregate Streams Triad bandwidth
is 90 GB/s.

3.2.3 Instruction set

Figure 6 shows the KNL’s instruction set architecture (ISA) which besides the instruc-
tions from the other Intel Xeon processors features support 512 bit vector operations.
Those AVX-512 instructions can perform eight double-precision and sixteen single-
precision multiply-add operations of the same type at once. Those basic operations
are included in the AVX-512 Foundation instructions (AVX-512F). Many other op-
timizations for various purposes are added by the Intel AVX-512 Conflict Detection
(AVX-512CD), Exponential & Reciprocal (AVX-512ER) and Prefetch (AVX-512PF)
instructions.
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Figure 7: The Omni-Path Architecture connects all nodes via several links and switches
and the HFI (source: [9, Chapter I.5]).

3.2.4 Omni-Path

The nodes are connected via an Intel Omni-Path Architecture (OPA) (cf. figure 7)
that guarantees high bandwidth (100Gb/s) and low latency (under 110ns) as well as
scalability up to hundreds of nodes. Therefore, each host (node) is connected to a fabric
of links and switches via the HFI which is used to implement the physical and link layers
of the fabric. This enables the nodes to communicate with each other by sending and
receiving packets. Those are forwarded by switches which in turn are managed by the
Fabric Manager software [9, Chapter I.5].

3.2.5 Input/Output

For Input/Output (I/O) transactions 36 lanes of PCIe Gen3 are used. Those consist
of two x16 lane connected to the Omni-Path ports and and one x4 lane for external
devices (cf. figure 3).
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4 Current QCD libraries
Lattice QCD calculations are performed using predefined classes and routines from Ap-
plication Programming Interfaces (API). This chapter briefly introduces the currently
used libraries Chroma, QDP++ and LibHadronAnalysis. As most of the code was
developed almost 15 years ago, a new implementation will be regarded in chapter 5.

4.1 Chroma & QDP++

The Chroma[10] and QDP++ libraries (or data parallel interfaces) contain several al-
gorithms for QCD on the lattice. Besides the application of the internal classes and
functions inside a C++ framework, simulations can be run via Extensible Markup Lan-
guage (XML) input files and information can then be gathered from binary hdf5 output
files. A detailed look into the source code is not necessary here, only the underlying
data structure will be relevant in the following chapters.
For later comparison the arrangement of data in memory is given by the following or-
der. The outermost index runs over the sites in temporal and spatial directions. Each
site then contains a spin matrix of colour matrices storing the real and imaginary part
(in the case of complex numbers). This order reflects the physical composition of these
tensors, but will be modified in chapter 5.4 for the GRID library implementation.

4.2 LibHadronAnalysis

The LibHadronAnalysis was particularly developed for calculations of Baryon Disribu-
tion Amplitudes (BDA), Meson Distribution Amplitudes (MDA) and Baryon Spectra
(light and heavy). It provides efficient implementations tailored to computations on
these objects on the Many Integrated Core (MIC) architecture and therefore performs
better than previous implementations. As input and output parameters Chroma classes
are used, so that the LibHadronAnalysis can easily be integrated into normal Chroma
code.
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5 GRID
As the old libraries mentioned in chapter 4 might not be the best choice for modern
computer architectures anymore, the GRID project aims for a better interplay of code
and modern hardware. It is currently developed by Peter Boyle, Antonin Portelli, Azusa
Yamaguchi4 and Guido Cossu5 using the C++11 standard and explicitly addressing
lattice QCD simulations on supercomputers.
This chapter introduces the basic data types and tensors of this new C++ data parallel
library and their corresponding classes for QCD computations on the lattice. After a
brief look at the data structure in memory (as done in chapter 4), a variety of examples
for the implemented optimizations are given and eventually the basic employment of
the library is demonstrated.

5.1 Basic data types

GRID provides data types that fit the specific architecture of the target machine.
These are Real and Complex with the suffix ’F’ for single and ’D’ for double precision
as well as a prefix ’v’ for the vector types (no prefix is scalar), i.e. a vector containing
complex double values is denoted as vComplexD. Those data type classes essentially
wrap the built-in data types and use their inline operator functions for implementations
of the arithmetic operations. Consequently, GRID supports several different Single
Instruction Multiple Data (SIMD) architectures with the following instruction sets:
SSE4 (128 bit) AVX, AVX2, QPX (256 bit), IMCI and AVX512 (512 bit).

5.2 Basic tensors

The following basic classes provide scalars, vectors and matrices. The elements are
stored in the member _internal, which is respectively a scalar, array or matrix. All
major tensors of the QCD section of GRID are composed of those three classes, e.g.
the ColourMatrix is defined (in QCD.h) as

iScalar<iScalar<iMatrix<Complex, Nc> > >.

4School of Physics, The University of Edinburgh.
5Theory Center, IPNS, High Energy Accelerator Research Organization (KEK), Tsukuba.
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• iScalar

1 template <c l a s s vtype>
2 c l a s s iScalar {
3 pub l i c :
4 vtype _internal ;

Listing 1: Excerpt from the class declaration of iScalar in Tensor_class.h.

• iVector

1 template <c l a s s vtype , i n t N>
2 c l a s s iVector {
3 pub l i c :
4 vtype _internal [ N ] ;

Listing 2: Excerpt from the class declaration of iVector in Tensor_class.h.

• iMatrix

1 template <c l a s s vtype , i n t N>
2 c l a s s iMatrix {
3 pub l i c :
4 vtype _internal [ N ] [ N ] ;

Listing 3: Excerpt from the class declaration of iMatrix in Tensor_class.h.

5.3 QCD

The GRID library was primarily designed to allow for fast calculations in the field of
lattice QCD and so it comes with a lot of classes and functions that fit this goal. This
section introduces the most important aspects of this QCD module and how to use it.

5.3.1 Conventions

In the code some constants will appear that are frequently used and thus shortly
explained in table 1. All matrices are indexed in the order: Lorentz, Spin, Colour.
Hence e.g. a SpinMatrix is written as iScalar<iMatrix<iScalar<Complex>,Ns> >.

Description Value
Nd Number of space-time dimensions 4
Ns Dimension of the spin vector space 4
Nc Dimension of the colour vector space 3

Table 1: Summary of QCD relevant constants.
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5.3.2 Tensors

The basic QCD tensors are composed of the basic tensors described in 5.2 (using the
template typename vtype):

iSinglet = iScalar < iScalar < iScalar < vtype >>>

iSpinMatrix = iScalar < iMatrix < iScalar < vtype >, Ns >>

iColourMatrix = iScalar < iScalar < iMatrix < vtype, Nc >>>

iSpinColourMatrix = iScalar < iMatrix < iMatrix < vtype, Nc >, Ns >>

iLorentzColourMatrix = iVector < iScalar < iMatrix < vtype, Nc >>, Nd >

iDoubleStoredColourMatrix = iVector < iScalar < iMatrix < vtype, Nc >>, Nds >

iSpinVector = iScalar < iVector < iScalar < vtype >, Ns >>

iColourVector = iScalar < iScalar < iVector < vtype, Nc >>>

iSpinColourVector = iScalar < iVector < iVector < vtype, Nc >, Ns >>

iHalfSpinVector = iScalar < iVector < iScalar < vtype >, Nhs >>

iHalfSpinColourVector = iScalar < iVector < iVector < vtype, Nc >, Nhs >>

Those in turn are used to define the complex tensors, such as the following6:

SpinMatrix = iSpinMatrix < Complex >

ColourMatrix = iColourMatrix < Complex >

SpinColourMatrix = iSpinColourMatrix < Complex >

LorentzColourMatrix = iLorentzColourMatrix < Complex >

DoubleStoredColourMatrix = iDoubleStoredColourMatrix < Complex >

SpinVector = iSpinVector < Complex >

ColourVector = iColourVector < Complex >

SpinColourVector = iSpinColourVector < Complex >

Furthermore there are tensors with suffix ’F’ or ’D’ indicating that ComplexF/ComplexD
is used, as well as tensors with prefix ’v’ for the vectorized data types such as vComplex,
e.g.

vSpinMatrixD = iSpinMatrix<vComplexD>.

6The presented tensor list is not complete.
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5.3.3 Lattice class

The Lattice template class is the basic class for any lattice QCD related code. The
vector _odata stores the elements defined by the template argument vobj in an order
corresponding to its position on the lattice.

1 template<c l a s s vobj>
2 c l a s s Lattice : pub l i c LatticeBase {
3 pub l i c :
4 Vector<vobj> _odata ;

Listing 4: Excerpt from the class declaration of Lattice in Lattice_base.h.

With this class the tensors from 5.3.2 are placed on the lattice in the following
manner (e.g. for the LatticeSpinColourMatrix):

LatticeSpinColourMatrix = Lattice<vSpinColourMatrix>

In this example an object of type SpinColourMatrix is allocated to each single site
of the lattice. Hence for the initialization of a Lattice object the lattice’s layout is
required and must be provided to the constructor. This process will be further explained
in section 5.7.1.

5.3.4 Physical tensors

Finally, the physical tensors on the lattice are simply written as follows7:

LatticeFermion = LatticeSpinColourVector

LatticePropagator = LatticeSpinColourMatrix

LatticeGaugeField = LatticeLorentzColourMatrix

5.4 Data structure

The tensors are stored in a specific order so that a high performance can be achieved for
most applications. As the LatticePropagator will frequently be used in the following
sections it shall serve as an example here.
The LatticePropagator has a Ns × Ns spin matrix with elements of type colour
matrix (Nc×Nc) for every lattice site. The values are either single or double precision
complex numbers and therefore have a real and imaginary part. The total number

7This list is just a small excerpt of the whole type definitions in the source code.
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of bytes used in such a single precision LatticePropagator on a lattice of volume
V = L1 × L2 × L3 × L4 can now be calculated as follows:

NLatticePropagator
bytes = V ×N2

s ×N2
c × 2× 4 bytes (15)

where the factor 2 × 4 corresponds to real and imaginary single precision numbers.
To get NLatticePropagator

bytes with double precision numbers simply multiply by a factor of
two.
The way this tensor is stored in memory is not as straight forward as in the Chroma
implementation. There are two sets of indices to be considered: lattice site and
SpinColourMatrix element. The outermost index (describing the elements furthest
away from each other in memory) is the temporal component of the lattice followed by
spin and then colour index of the SpinColourMatrix8. The innermost index is left for
the spatial component of the lattice. The real and imaginary parts are stored directly
next to each other. The peculiarity of this structure is that the elements with the same
spin-colour index on different lattice sites (with same time t) lie directly next to each
other in memory. The efficiency of this structure will be investigated later on.

5.5 Optimizations

5.5.1 Matrix-vector product

One of the most frequently used operation in lattice QCD calculations is the com-
putation of matrix-matrix and matrix-vector products. Among these are products of
colour (3× 3) and spin matrices (4× 4). When it comes to an efficient implementation
of those operations two problems should be considered. First of all, a 512 bit vector
with eight single precision complex numbers is suboptimal for a 3× 3 matrix with nine
elements. Secondly, after the scalar multiplication of the matrix/vector elements and
accumulating them in a SIMD vector, one needs to horizontally sum over those results
at the end of each row. This leads to a reduction in performance as this addition can
only be calculated after all multiplications are done.
The solution to these observations lies in the computation of several matrix-vector

products at once [12, Section 2.1] (see figure 8). The SIMD lane now consists of elements
with the same index but in different matrix-vector pairs (cf. figure 8). For the right
number of such pairs this process is up to 100% efficient. GRID uses the implementation
given in listing 5. Here, the template type simd can be as simple as a float for a
standard matrix-vector product or one of GRID’s vector types. One should realize
that the utilization of the GRID types automatically leads to the optimized approach
discussed above.

8The Lorentz index is left out for simplification.
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Figure 8: Top: Natural approach of a matrix-vector multiplication. Bottom: GRID’s
approach for many matrix-vector pairs (source: [11]).

1 i n l i n e template<in t N , c l a s s simd>
2 void matmul ( simd∗ x , simd∗ y , simd∗ z )
3 {
4 f o r ( i n t i=0;i<N ; i++){
5 f o r ( i n t j=0;j<N ; j++){
6 x [ i ] = x [ i ]+y [ i∗N+j ]∗ z [ j ] ;
7 }
8 }
9 }

Listing 5: Matrix-vector multiplication in GRID.

5.5.2 Circular shift function

The circular shift (Cshift) of the lattice is a function that will later be used for the
computation of derivatives. It basically takes a Lattice object and returns an instance
of the same type that is shifted by an arbitrary number of sites in a given direction
(shown in listing 6).

1 LatticePropagator prop1(&Grid ) , prop2(&Grid ) ;
2 i n t dimension = 0 ;
3 i n t length = 1 ;
4 prop2 = Cshift ( prop1 , dimension , length ) ;

Listing 6: The Cshift function returns a LatticePropagator that has been shifted by
one unit in dimension zero.
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By shifting the lattice at the surface of a sub-lattice, some sites may now become
part of a new neighbourhood. In order to fix this, a permutation as shown in figure 9
can be applied onto those elements. This is SIMD efficient as well as suppressed by the
small surface to volume ratio [12, Section 2.3].

Figure 9: Cshift operation with permutation of sites A and E. A becomes now part
of the blue sub-lattice and B part of the red sub-lattice so that locality is
restored (source: [12, Figure 3]).

5.6 Over-decomposed layout

In order to reach a maximum efficiency of the SIMD architecture, the lattice is over-
decomposed into more sub-lattices than the number of Message Passing Interface (MPI)
tasks would suggest [12, Section 2.2]. Thus, one physical node may hold more than one
virtual node, each handling one sub-lattice. When an operation has to be made, GRID
is now able to fill the SIMD vectors in an optimal way, using data from different
virtual nodes in one vector if possible. The detailed mapping for a given GRID data
type on a target machine with a certain instruction set is shown in table 2. This way
multiple GRID objects with arbitrary dimensions can be active in one programme and
conformable operations on the same GRID object can be done parallel and efficient.

ISA vRealF vRealD vComplexF vComplexD default layout
SSE 4 2 2 1 1 1 1 2
AVX 8 4 4 2 1 1 2 2

AVX512 16 8 8 4 1 2 2 2

Table 2: Vector lengths for different instruction sets and the corresponding over-
decomposed default layout (x,y,z,t).

5.7 Basic usage

As later code snippets might become easier to understand with some previous knowl-
edge about the most common classes and functions, this section serves as an introduc-
tion for those who are about to read or even write GRID programs.
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5.7.1 Initialization

The main function of every GRID program starts with an initialization Grid_init()
and ends with the corresponding Grid_finalize() function call, as demonstrated in
listing 7.

1 #inc lude <Grid . h>
2 us ing namespace Grid ;
3

4 i n t main ( i n t argc , char ∗∗ argv )
5 {
6 Grid_init(&argc ,&argv ) ;
7 // do something . . .
8 Grid_finalize ( ) ;
9 }

Listing 7: Basic pattern of a GRID program.

The next step is setting up the grid that contains all necessary information for the
communication and organization of the lattice data. This can be achieved by calling the
GridCartesian constructor (listing 8) which needs to know the size of the lattice, the
SIMD layout and the MPI layout. All those parameters can easily be obtained by call-
ing the GridDefaultLatt(), GridDefaultSimd() and GridDefaultMpi() functions.
GridDefaultLatt() returns a {8,8,8,8} vector and thus corresponds to a 84 lattice.
GridDefaultMpi() returns a {1,1,1,1} vector. Both vectors can also be set as com-
mand line arguments –-grid n.n.n.n and –-mpi n.n.n.n, so that in case of multiple
tasks the lattice is distributed among the corresponding cores and/or processors. The
programmer has to make sure that the product of the elements equals the number of
tasks in the MPI environment.

1 std : : vector<int> latt_size = GridDefaultLatt ( ) ;
2 std : : vector<int> simd_layout = GridDefaultSimd (Nd , vComplex : : Nsimd ( ) ) ;
3 std : : vector<int> mpi_layout = GridDefaultMpi ( ) ;
4 GridCartesian Grid ( latt_size , simd_layout , mpi_layout ) ;

Listing 8: Setting up a default grid.

When the GridCartesian is set up it must also be used for the initialization of
Lattice types, as done in listing 9. This is mandatory because there is no default
initialization for those Lattice types.

1 LatticePropagator prop(&Grid ) ;
2 // Latt i cePropagator prop ; <− no de f au l t con s t ruc to r

Listing 9: Initialization of a Lattice type with a GridCartesian.
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5.7.2 Peek & poke

The GRID library provides peek and poke functions allowing for a comfortable handling
of the lattice tensors. In practice, one obtains spin, colour and Lorentz elements by
applying the peekSpin(), peekColour() and peekLorentz() functions on the tensors.
The latter can be manipulated by pokeSpin(), pokeColour() and pokeLorentz() (see
listing 10). Individual sites of Lattice objects can be addressed via peekSite() and
pokeSite() (see listing 11).

1 LatticeSpinMatrix spinMat(&Grid ) ;
2

3 LatticeComplex result(&Grid ) ;
4 result = peekSpin ( spinMat , 0 , 0 ) ;
5

6 LatticeComplex c(&Grid ) ;
7 pokeSpin ( spinMat , c , 0 , 0 ) ;

Listing 10: Peek & poke functions applied to a LatticeSpinMatrix.

1 LatticeColourMatrix lcMat(&Grid ) ;
2 ColourMatrix cMat(&Grid ) ;
3 std : : vector<int> site = {2 ,3 , 1 , 3} ;
4

5 pokeSite (cMat , lcMat , site ) ;
6 peekSite (cMat , lcMat , site ) ;

Listing 11: Manipulation of a certain site on a LatticeColourMatrix via peek and
poke functions.

As the data of GRID’s classes (stored in _internal) is public, one might also address
it directly as shown in listing 12.

1 LatticeSpinMatrix spinMat(&Grid ) ;
2

3 // Set the sp in o f spinMat to 42 on each s i t e :
4 f o r ( i n t i=0; i<spinMat . _odata . size ( ) ; i++) {
5 spinMat . _odata [ i ] . _internal . _internal [ 0 ] [ 0 ] . _internal = 42 ;
6 }
7 // Pr int sp in o f s i t e 0 :
8 std : : cout << spinMat . _odata [ 0 ] . _internal . _internal [ 0 ] [ 0 ] . _internal ;

Listing 12: Direct manipulation of a certain site on a LatticeSpinMatrix without
peek and poke functions.
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6 Comparison
After the basics about lattice QCD, QPACE 3 and the software have been introduced
in the previous chapters, the task is now to apply this knowledge. The libraries can
be compiled, the benchmarks can be written and evaluated. With regard to the imple-
mentation of the MDA in chapter 7, the code is set up to test the performance of the
computation of correlation functions and derivatives, the main ingredients of the MDA
calculation.

6.1 Configurations

The GRID library is available on Github9 in different versions (or branches). Among
those are e.g. two releases (release/v0.6.0 and release/v0.7.0), a branch for the current
development (develop) and of course a master branch. In order to get the results based
on the newest optimizations and developments, the later discussed benchmarks will be
done with the develop branch.
For the compilation GRID supports Intel’s ICPC, Clang and GCC compilers. For this
thesis several builds were set up with those compilers except for Clang. For the com-
munication, several versions of MPI were used, namely Open MPI, MVAPICH 2 and
Intel MPI.
In order to get the best comparability between GRID and Chroma, the latter was
also compiled with the compilers above and MVAPICH 2 and Intel MPI. All configura-
tions use double precision numbers. Additionally, GRID features a configuration option
(–-enable-simd=KNL) particularly designed for the SIMD configuration on the KNL.
It replaces the –-enable-simd=AVX512 option that enables 512 bit vector operations.
For the evaluation of the efficiency of these vector sizes in section 6.2.4, the GRID
GCC MVA builds have also been compiled with 256 bit (AVX2) and 128 bit (SSE4)
instructions. Table 3 gives a detailed overview of the exact compiler and MPI versions
chosen and the abbreviations which will from now on be used in this document.

Abbreviation Library Compiler MPI
Chroma GCC MVA Chroma GCC 6.2.1 MVAPICH 2-2.2-psm2
Chroma ICC Intel Chroma ICC 17.0.2 Intel MPI library 2017.2
GRID GCC Open GRID GCC 6.2.1 Open MPI 1.10.3
GRID GCC MVA GRID GCC 6.2.1 MVAPICH 2-2.2-psm2
GRID ICC Intel GRID ICC 17.0.2 Intel MPI library 2017.2

Table 3: Chroma and GRID were compiled with two different compilers and two/three
MPI versions each.

9https://github.com/paboyle/Grid.
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6.2 Basic benchmarking

Now that the libraries are compiled, code for the testing process is required that ex-
ecutes the same tasks for the GRID as well as the Chroma library. So there will be
a framework where the initialization of objects takes place and a section where the
actual computation takes place. The latter will be done several times (typically 1000
or 10000) inside a loop in order to get a good estimate of the average performance and
to be able to compute the error.

6.2.1 Source code

The two benchmark files discussed in this section can be run with several command line
arguments. The most important ones are –-mpiLayout which requires four arguments
indicating the number of tasks in the respective direction and –-lattice also with
four arguments indicating the number of sites in each direction, where the last one
is thought to be in the temporal direction. These are used for the initialization of a
GridCartesian object as shown in listing 8. Among the other options are settings for
the number of threads and loops.

benchmarkCorrelation.cpp This program basically just tests the capability of multi-
plying Lattice objects, in this case LatticePropagators. There is no communication
between the tasks involved. As an example case, a correlation function is computed,
like the one introduced by equation (8). The output then consists of the time used per
iteration and the number of GFlops per second (each with error). Listing 13 shows
an excerpt of the full code used for the computation with GRID. This part is almost
identical to the one written for Chroma.
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1 Gamma gamma5 ( Gamma : : Algebra : : Gamma5 ) ;
2 LatticePropagator quark_propagator(&Grid ) ;
3 LatticeComplex corr(&Grid ) ;
4

5 LatticePropagator anti_quark = gamma5 ∗ quark_propagator ∗ gamma5 ;
6 anti_quark = adj ( anti_quark ) ;
7

8 double timeData [ nLoops ] ;
9

10 f o r ( i n t i=0; i<nLoops ; i++) {
11 double start = usecond ( ) ;
12

13 corr = trace ( anti_quark ∗ gamma5 ∗ quark_propagator ∗ gamma5 ) ;
14

15 double stop = usecond ( ) ;
16 timeData [ i ] = stop−start ;
17 }
18

19 std : : cout << corr << std : : endl ;

Listing 13: Excerpt of the most important parts from benchmarkCorrelation.cpp
(GRID version).

benchmarkDerivative.cpp This benchmark differs from the previous one only by
the line where the computation takes place (see listing 14). This is again just a
LatticePropagator multiplication but the quark propagator is now replaced by its
covariant derivative (cf. section 2.2), which contains the circular shift function Cshift
from section 5.5.2. For the shift of the propagator into any direction communication
between the MPI ranks and also between the tiles is required on the borders of the
sublattices.
The covariant derivative is already implemented in Chroma, thus it can be easily com-
puted by calling the rightNabla function and the whole computation can be done in
one line of code (see Listing 15).
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1 Gamma gamma5 ( Gamma : : Algebra : : Gamma5 ) ;
2 LatticePropagator quark_propagator(&Grid ) ;
3 LatticeComplex corr(&Grid ) ;
4

5 LatticeGaugeField Umu(&Grid ) ;
6 LatticeColourMatrix gField = U [ mu ] ;
7 LatticePropagator tmp(&Grid ) ;
8

9 LatticePropagator anti_quark = gamma5 ∗ quark_propagator ∗ gamma5 ;
10 anti_quark = adj ( anti_quark ) ;
11

12 double timeData [ nLoops ] ;
13

14 f o r ( i n t i=0; i<nLoops ; i++) {
15 double start = usecond ( ) ;
16

17 ctmp = adj ( gField ) ∗ quark_propagator ;
18 corr = trace ( anti_quark ∗ gamma5 ∗ ( gField∗
19 Cshift ( quark_propagator , mu , length )−Cshift (tmp , mu ,−length ) ) ∗
20 gamma5 ) ;
21

22 double stop = usecond ( ) ;
23 timeData [ i ] = stop−start ;
24 }

Listing 14: Excerpt of the most important parts from benchmarkDerivative.cpp (GRID
version).

1 corr = trace ( anti_quark ∗ gamma5 ∗
2 rightNabla ( quark_propagator , u , mu , length ) ∗ gamma5 ) ;

Listing 15: In the Chroma version of benchmarkDerivative.cpp the computation inside
the loop can be done in one line, as the covariant derivative is implemented
by the rightNabla function.

6.2.2 Execution

After compilation the programs can now be executed on the QPACE 3 via "slurm", a
workload manager and job scheduling system, designed for small and large clusters. A
slurm script as shown in listing 16 must be written and submitted in order to run a
certain command on a cluster as the QPACE 3. This script consists of a header which
contains information concerning the job itself and the cluster. Among these are the
job’s name and estimated duration, the number of nodes, tasks per node and cores per
task. Additionally one is able to specify a working directory where the output is written
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to, the partition of the cluster (in this case "qp3" for QPACE 3) and the maximum
number of switches used for the job allocation (always 1 on the QPACE 3). After that
the actual commands are executed, in this case loading the right MPI version (Mvapich,
Open MPI or Intel), setting the number of threads used per task and pinning those
threads to certain cores10. The latter is done in order to gain performance and reduce
the variability of computation times as OpenMP typically would migrate some of the
processes from one core to another. The bash script get_thread_pinning_env.sh
takes three arguments:

1. intel or gnu/gcc: Defines the OMP runtime library

2. 1/2/3/4: Defines the number of threads per core

3. scatter/compact: Defines the affinity setting (irrelevant in the case of one thread
per core)

This script then returns the corresponding pinning environment, e.g. in the case of
"intel 1 scatter":

export KMP_PLACE_THREADS=1T;

export KMP_AFFINITY=scatter

The last command in the slurm script eventually calls the executable. Two different
options are used in this line: –-cpu_bind=sockets & rank_ldom. The first one is
applied in combination with one task per node and 64 cores per task and binds the
tasks to the CPU’s with respect to the whole socket, which is in this case one KNL. As
the processors of QPACE 3 are currently using the SNC-4 mode (discussed in chapter
3.2), it might be beneficial to use four tasks per node with 16 cores each and then
set –-cpu_bind=rank_ldom, which binds the cores according to the NUMA domains.
Those two options will later be notated as "Socket" and "NUMA".
While the srun command is used for the Mvapich and Intel MPI scripts, the Open
MPI scripts employ mpirun with options –-map-by socket or numa and –-bind-to
socket or numa (cf. listing 17).

10The script used for thread pinning has been written by Daniel Richtmann (University of Regens-
burg).
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1 #!/ bin /bash
2 #
3 #SBATCH −−job−name=benchmark
4 #SBATCH −−time =1:30:00
5 #SBATCH −−pa r t i t i o n=qp3
6 #SBATCH −−sw i t che s=1
7 #SBATCH −−nodes=1
8 #SBATCH −−ntasks−per−node=1 # or 4
9 #SBATCH −−cpus−per−task=64 # or 16

10 #SBATCH −−workdir=/home/ fim16418/ slurm/ gr id / co r r
11

12 module load mpi/mvapich2−2.2−psm2−x86_64
13 #module load mpi/openmpi−x86_64
14 #module load mpi/ i n t e l /2017 .2 .174
15

16 export OMP_NUM_THREADS=64 # or 16
17

18 thread_pinning_env=$ ( get_thread_pinning_env . sh gnu 1 scatter ) ;
19 $thread_pinning_env
20

21 srun −−mpi=pmi2 −−cpu_bind=sockets benchmarkCorrelation
22 #srun −−mpi=pmi2 −−cpu_bind=rank_ldom benchmarkCorrelat ion

Listing 16: This slurm script example already shows the most common instructions
used in this thesis.

1 MPIENV="−−map−by socket −−bind−to socke t "
2 #MPIENV="−−map−by numa −−bind−to numa"
3 mpirun $MPIENV benchmarkCorrelation

Listing 17: Execution of a program compiled with Open MPI.

6.2.3 Number of threads

As already determined in the slurm script from listing 16, 64 (Socket) or 16 (NUMA)
threads per task are employed. This number is not arbitrary but was obtained by a
few benchmarks depicted in figures 10 and 11. Here, the code from benchmarkCorre-
lation.cpp ran on one node with one task (Socket) or four tasks (NUMA) and a 84

lattice.
It can easily be seen that the best performance is obtained at a number of threads that
is divisible by the number of cores, e.g. 64 and 128 for 64 cores. Between those peaks
some cores may have been assigned fewer threads than others and hence they have to
wait for those to finish. Despite the fact that GRID acts in a more inconsistent manner
for 129 to 256 threads, all builds roughly show the same behaviour. The performance
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breaks down if more threads are allocated than the maximum of four threads per core.
For all the following benchmarks the number of threads has been set to equal the
number of cores in order to get a peak performance and to be able to pin the threads
accordingly.

Determination of the number of threads (Socket)

Figure 10: This benchmark shows the GFlop/s vs. threads per task for builds on one
node with one task. It applied the correlation benchmark on a 84 lattice.

6.2.4 Vectorization

One novelty of the KNL is (as already stated in 3.2) the support for 512 bit vector
instructions. Figures 12 and 13 show the number of GFlop/s versus the lattice volume
(for lattices of size 24, 44, 64, ...). As the volume increases, so does the performance for
the simple reason that for very small lattices there is too few data for too many cores.
E.g. a 24 lattice has only 16 sites and for a total of 64 cores each core handles on
average only 0.25 sites. This effect soon vanishes as the lattice grows.
Certainly, the 512 bit builds in figures 12 and 13 deliver the best performance as they
are able to compute up to four times the amount of data as the 128 bit build. But the
GRID GCCMVA build is not as efficient as this factor of four would suggest. Regarding
the number of flops on the 364 lattice, the expected factor of two is observed between
the 256 bit and 128 bit point. The 512 bit (GCC MVA) point however only gives a
factor of three instead of four. This can be observed in both cases, socket and NUMA.
The ICC Intel build however delivers the expected performance in both plots. This
is not surprising as Intel’s compiler is naturally the best choice for the Intel product
KNL.
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Determination of the number of threads (NUMA)

Figure 11: This benchmark shows the GFlop/s vs. threads per task for builds on one
node with four tasks. It applied the correlation benchmark on a 84 lattice.

Various vector lengths (Socket)

Figure 12: Correlation benchmark for GRID GCC MVA builds with different vector
lengths and the 512 bit GRID ICC Intel build. The lattice volume N4 is
simply denoted as N (for N = 2, 4, 6, ...).
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Various vector lengths (NUMA)

Figure 13: Correlation benchmark for GRID GCC MVA builds with different vector
lengths and the 512 bit GRID ICC Intel build. The lattice volume N4 is
simply denoted as N (for N = 2, 4, 6, ...).

6.3 Benchmarks

After all these preparations, the actual correlation and derivative benchmarks can be
finally run and evaluated.

6.3.1 Correlation benchmarks

One node The correlation benchmark does not require any kind of communication
between the cores and thus poses a simple way of comparing the performances of GRID
and Chroma when it comes to matrix multiplications on the lattice. Figure 14 shows
the average number of GFlop/s (with errors) on lattices of different sizes, computed
on one node with one task.
Clearly in this case, all GRID benchmarks yield higher performances compared to
Chroma. GRID GCC MVA (green) and GRID GCC Open (blue) are approximately
even as the only difference between these two is the choice of MPI, which is of course
irrelevant here as there is no MPI communication involved. While for the Chroma
benchmarks there is no big discrepancy for the Intel and GCC compiler versions, GRID
is able to benefit from the ICC due to the better usage of the vector registers (as
discussed in section 6.2.4).
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Comparison correlation benchmark (Socket)

Figure 14: Correlation benchmark for all GRID and Chroma builds. The lattice volume
N4 is simply denoted as N (for N = 2, 4, 6, ...).

All curves show but a similar behaviour. The small descent between the 84 and 104

lattice results from the tensors not fitting into the L2 cache (32MB) anymore, because
one (of at least two) LatticePropagator on a 104 lattice already needs about 23MB
of memory:

NLatticePropagator
bytes = V ×N2

s ×N2
c × 2× 8 bytes

= 104 × 42 × 32 × 2× 8 bytes

= 23 040 000 bytes

≈ 23 MB

Hence the data required is only accessible with a higher latency. From this point
on, GRID in contrast to Chroma manages to gain computational power as the lattice
volume increases. This can most probably be assigned to a more effective pipelining.
The same benchmarks were run on one node with four tasks (see figure 15) and they
show a similar picture. Chroma is not really affected from this change in the number of
tasks but GRID already shows the maximum performance for lattices of 84 and bigger.

Multiple nodes The purpose of the next benchmarks is now to go from computations
on one node to a cluster of nodes as can be found on the QPACE 3. The data will be
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presented as a comparison of GRID and Chroma on one, two and four nodes with one
or four tasks each. Additionally, the plots are divided into ICC Intel and GCC MVA
versions. The x-axis represents the lattice volume per node (weak scaling) so that e.g.
the total lattice volume on four nodes is four times the local volume on one node, etc.
The y-axis now shows the GFlop/s per node in order to make the benchmarks more
comparable.
Figure 16 is a comparison of GRID GCC MVA and Chroma MVA on various numbers
of nodes with one task per node. The general behaviour of the performances on multiple
nodes reflects the one from only one node. To be more precise, the total number of
GFlop/s increases linearly with the number of nodes. For big lattices GRID overall
reaches roughly 50% more GFlop/s than Chroma. This difference even increases for
the ICC Intel builds in figure 17. Here, the performance of GRID is around two times
the performance of Chroma, so that GRID requires only half of the nodes for the same
computational power (on large lattices).
While for the same computations with four tasks per node (see figure 18) Chroma stays
unchanged, GRID reaches the peak performance already on a 84 lattice (per node).
In figure 19 the same procedure is repeated with the ICC Intel builds resulting again in
higher performances for GRID compared to GRID GCC MVA. Comparing the socket
and NUMA performances it is obvious that Chroma is not affected by the NUMA
setting, in contrast to GRID.

Comparison correlation benchmark (NUMA)

Figure 15: Correlation benchmark for all GRID and Chroma builds. The lattice volume
N4 is simply denoted as N (for N = 2, 4, 6, ...).
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Comparison correlation benchmark
for multiple nodes with GCC MVA (Socket)

Figure 16: Correlation benchmark for the GCC MVA builds. The lattice volume N4 is
simply denoted as N (for N = 2, 4, 6, ...) and given per node.

Comparison correlation benchmark
for multiple nodes with ICC Intel (Socket)

Figure 17: Correlation benchmark for the ICC Intel builds. The lattice volume N4 is
simply denoted as N (for N = 2, 4, 6, ...) and given per node.
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Comparison correlation benchmark
for multiple nodes with GCC MVA (NUMA)

Figure 18: Correlation benchmark for the GCC MVA builds. The lattice volume N4 is
simply denoted as N (for N = 2, 4, 6, ...) and given per node.

Comparison correlation benchmark
for multiple nodes with ICC Intel (NUMA)

Figure 19: Correlation benchmark for the ICC Intel builds. The lattice volume N4 is
simply denoted as N (for N = 2, 4, 6, ...) and given per node.
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6.3.2 Derivative benchmarks

In contrast to the previous benchmarks, this one employs communication between the
cores, tasks on one node and tasks on different nodes. The crucial point here is the
Cshift function inside the benchmarked computation. By means of the following plots
the impact of this communication shall be observed and discussed in both libraries,
GRID and Chroma. The whole setup and procedure is the same as for the correlation
benchmarks, except for the code and consequently the amount of allocated memory
(i.e. more LatticePropagators are involved here).

One node At first, the benchmarks are again run on only one node with one task
(see figure 20) and four tasks (figure 21). The obvious difference to the plots before is
that for the socket setup Chroma is faster than GRID by around 50% (for big lattices).
The communication’s impact is in this case not as grave as for GRID, for which the
performance is now only a fraction of the one obtained in figure 14.
Regarding the overall behaviour of all benchmarks in figure 20 the performance drop
for the data not fitting into the L2 cache lies here between the 64 and 84 volume on
account of more Lattice objects, i.e. the shifted LatticePropagators and the gauge
links. Eventually, the benchmark results show a drop in performance for bigger lattices
because the sublattices do not fit into the L2 cache anymore and as a consequence
not only the responsible cores have to get the data from the DDR if needed, but also
if requested from other cores for the computation of the circular shift. This becomes
more and more problematic as the number of sites per sublattice increases.
The NUMA plot in figure 21 gives but a different impression. Chroma is - like in the
correlation benchmarks - only scarcely touched by this change from one to four tasks
whereas GRID is able to draw even with Chroma’s performance. GRID ICC Intel is
again the build with the best results, outrunning Chroma by a small factor.

Multiple nodes For the comparison on multiple nodes, GRID’s and Chroma’s deriva-
tive benchmarks are run on one, two and four nodes with one or four tasks each. The
plots for one task per node with GCCMVA (figure 22) and ICC Intel (figure 23) confirm
the observations from above on just one node. The overall behaviour stays the same
for more than one node and Chroma remains the faster library in this case, although
some points from the GRID ICC Intel build come close to the ones from Chroma. Fur-
thermore GRID shows a wider spread of performances on different numbers of nodes,
especially in figure 23.
The benchmarks are repeated with four tasks per node and the results are shown in
figures 24 (GCC MVA) and 25 (ICC Intel). Again the conclusions are the same as for
one node as the GFlop/s scale linearly with the number of nodes.
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Comparison derivative benchmark (Socket)

Figure 20: Derivative benchmark for all GRID and Chroma builds. The lattice volume
N4 is simply denoted as N (for N = 2, 4, 6, ...).

Comparison derivative benchmark (NUMA)

Figure 21: Derivative benchmark for all GRID and Chroma builds. The lattice volume
N4 is simply denoted as N (for N = 2, 4, 6, ...).
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Comparison derivative benchmark
for multiple nodes with GCC MVA (Socket)

Figure 22: Derivative benchmark for the GCC MVA builds. The lattice volume N4 is
simply denoted as N (for N = 2, 4, 6, ...) and given per node.

Comparison derivative benchmark
for multiple nodes with ICC Intel (Socket)

Figure 23: Derivative benchmark for the ICC Intel builds. The lattice volume N4 is
simply denoted as N (for N = 2, 4, 6, ...) and given per node.
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Comparison derivative benchmark
for multiple nodes with GCC MVA (NUMA)

Figure 24: Derivative benchmark for the GCC MVA builds. The lattice volume N4 is
simply denoted as N (for N = 2, 4, 6, ...) and given per node.

Comparison derivative benchmark
for multiple nodes with ICC Intel (NUMA)

Figure 25: Derivative benchmark for the ICC Intel builds. The lattice volume N4 is
simply denoted as N (for N = 2, 4, 6, ...) and given per node.
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7 Meson Distribution Amplitude
In contrast to the previous chapter, the following discussion is about whether a suf-
ficiently efficient implementation of the MDA can be found using the GRID classes
and functions. The results are compared to the already optimized implementations in
LibHadronAnalysis.

7.1 MDA implementations

For the computation of the MDA with the GRID library essentially two approaches
are tested. The first one can be found in algorithm 1. It takes two propagators as
parameters and contracts them in two steps: preparation and computation. In the first
part the colour matrices are extracted from the propagators and stored in arrays where
the index corresponds to the original spin index. After that, the MDA is computed by
taking the (colour) trace over those arrays with all possible spin index combinations.
The implementation of this function in GRID is shown in listing 18.

1 LatticePropagator p1(&Grid ) ;
2 LatticePropagator p2(&Grid ) ;
3

4 LatticeColourMatrix colMat1 [ Ns∗Ns ](&Grid ) ;
5 LatticeColourMatrix colMat2 [ Ns∗Ns ](&Grid ) ;
6

7 LatticeComplex mda [ Ns∗Ns∗Ns∗Ns ](&Grid ) ;
8

9 // Preparat ion :
10 f o r ( i n t s1=0; s1<Ns ; s1++) {
11 f o r ( i n t s2=0; s2<Ns ; s2++) {
12 colMat1 [ s1∗Ns+s2 ] = peekSpin (p1 , s1 , s2 ) ;
13 colMat2 [ s1∗Ns+s2 ] = peekSpin (p2 , s1 , s2 ) ;
14 }}
15

16 // Computation :
17 f o r ( i n t s1=0; s1<Ns ; s1++) {
18 f o r ( i n t s2=0; s2<Ns ; s2++) {
19 f o r ( i n t s3=0; s3<Ns ; s3++) {
20 f o r ( i n t s4=0; s4<Ns ; s4++) {
21 tmp = colMat1 [ s1∗Ns+s2 ] ∗ colMat2 [ s3∗Ns+s4 ] ;
22 mda [ s1∗Ns∗Ns∗Ns+s2∗Ns∗Ns+s3∗Ns+s4 ] = trace ( tmp ) ;
23 }}}}

Listing 18: Excerpt from the GRID code for the MDA computation (first approach).
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Algorithm 1 First approach for computing the MDA
1: procedure MDA1(P1,P2) . Input two propagators
2: for α, β in 1...Ns do . Arrange data in LatticeColourMatrix arrays
3: C1[α, β]← P1α,β
4: C2[α, β]← P2α,β
5: end for
6: for α, β, γ, δ in 1...Ns do . Actual computation
7: MDA[α, β, γ, δ] = trc{C1[α, β]C2[γ, δ]}
8: end for
9: return MDA
10: end procedure

Algorithm 2 Improved approach for computing the MDA
1: procedure MDA2(P1,P2) . Input two propagators
2: for A,B in 1...Nc do . Arrange data in LatticeComplex arrays
3: for α, β in 1...Ns do
4: a[A,B, α, β]← P1A,Bα,β

5: b[A,B, α, β]← P2A,Bα,β

6: end for
7: end for
8: for α, β, γ, δ in 1...Ns do . Actual computation
9: MDA[α, β, γ, δ] = a[1, 1, α, β] b[1, 1, γ, δ]+
10: a[2, 1, α, β] b[1, 2, γ, δ]+
11: a[3, 1, α, β] b[1, 3, γ, δ]+
12: a[1, 2, α, β] b[2, 1, γ, δ]+
13: a[2, 2, α, β] b[2, 2, γ, δ]+
14: a[3, 2, α, β] b[2, 3, γ, δ]+
15: a[1, 3, α, β] b[3, 1, γ, δ]+
16: a[2, 3, α, β] b[3, 2, γ, δ]+
17: a[3, 3, α, β] b[3, 3, γ, δ]
18: end for
19: return MDA
20: end procedure

The second approach for the MDA computation arranges the data in arrays of
LatticeComplex objects. As can be seen in algorithm 2, the procedure is again divided
in a first part where the complex values of a certain spin and colour index are taken
from the propagators and a second part where those complex numbers are used to com-
pute the MDA. This second step now looks a bit more difficult as in the first approach
because the propagator multiplication and the trace are combined in a single step. The
corresponding GRID code (see listing 19) also involves a "pragma omp parallel for
collapse(4)" statement that indicates that the following four for loops are indepen-
dent and can (in principle) be processed in parallel. This line is essential for an efficient
implementation.
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1 LatticePropagator p1(&Grid ) ;
2 LatticePropagator p2(&Grid ) ;
3

4 LatticeSpinMatrix sMat1(&Grid ) ;
5 LatticeSpinMatrix sMat2(&Grid ) ;
6

7 LatticeComplex a [ Ns∗Ns∗Nc∗Nc ](&Grid ) ;
8 LatticeComplex b [ Ns∗Ns∗Nc∗Nc ](&Grid ) ;
9

10 LatticeComplex mda [ Ns∗Ns∗Ns∗Ns ](&Grid ) ;
11

12 // Preparat ion :
13 f o r ( i n t c1=0; c1<Nc ; c1++) {
14 f o r ( i n t c2=0; c2<Nc ; c2++) {
15 sMat1 = peekColour (p1 , c1 , c2 ) ;
16 sMat2 = peekColour (p2 , c1 , c2 ) ;
17

18 f o r ( i n t s1=0; s1<Ns ; s1++) {
19 f o r ( i n t s2=0; s2<Ns ; s2++) {
20 a [ c1∗Nc∗Ns∗Ns+c2∗Ns∗Ns+s1∗Ns+s2 ] = peekSpin ( sMat1 , s1 , s2 ) ;
21 b [ c1∗Nc∗Ns∗Ns+c2∗Ns∗Ns+s1∗Ns+s2 ] = peekSpin ( sMat2 , s1 , s2 ) ;
22 }}
23 }}
24

25 // Computation :
26 #pragma omp p a r a l l e l f o r c o l l a p s e (4 )
27 f o r ( i n t s1=0; s1<Ns ; s1++) {
28 f o r ( i n t s2=0; s2<Ns ; s2++) {
29 f o r ( i n t s3=0; s3<Ns ; s3++) {
30 f o r ( i n t s4=0; s4<Ns ; s4++) {
31

32 mda [ s1∗Ns∗Ns∗Ns+s2∗Ns∗Ns+s3∗Ns+s4 ] =
33 a [ 0∗ Ns∗Ns+s1∗Ns+s2 ] ∗ b [ 0∗ Ns∗Ns+s3∗Ns+s4 ] +
34 a [ 3∗ Ns∗Ns+s1∗Ns+s2 ] ∗ b [ 1∗ Ns∗Ns+s3∗Ns+s4 ] +
35 a [ 6∗ Ns∗Ns+s1∗Ns+s2 ] ∗ b [ 2∗ Ns∗Ns+s3∗Ns+s4 ] +
36 a [ 1∗ Ns∗Ns+s1∗Ns+s2 ] ∗ b [ 3∗ Ns∗Ns+s3∗Ns+s4 ] +
37 a [ 4∗ Ns∗Ns+s1∗Ns+s2 ] ∗ b [ 4∗ Ns∗Ns+s3∗Ns+s4 ] +
38 a [ 7∗ Ns∗Ns+s1∗Ns+s2 ] ∗ b [ 5∗ Ns∗Ns+s3∗Ns+s4 ] +
39 a [ 2∗ Ns∗Ns+s1∗Ns+s2 ] ∗ b [ 6∗ Ns∗Ns+s3∗Ns+s4 ] +
40 a [ 5∗ Ns∗Ns+s1∗Ns+s2 ] ∗ b [ 7∗ Ns∗Ns+s3∗Ns+s4 ] +
41 a [ 8∗ Ns∗Ns+s1∗Ns+s2 ] ∗ b [ 8∗ Ns∗Ns+s3∗Ns+s4 ] ;
42 }}}}

Listing 19: Excerpt from the GRID code for the MDA computation (second approach).
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Total time comparison of the two MDA algorithms

Figure 26: The plot shows the total time (logarithmic scale) used for several lattice
sizes for both MDA algorithms. The lattice volume N4 is simply denoted as
N (for N = 2, 4, 6, ...).

Both discussed approaches for the computation of the MDA are compared in figure
26. This plot depicts the total time for one call of the MDA functions, either with
algorithm 1 (MDA 1) or algorithm 2 (MDA 2) averaged over one thousand calls and
its error. The benchmarks are again done on one, two and four nodes each with the
GRID ICC Intel build. Although algorithm 2 is faster for small lattices the difference
between the two approaches almost vanishes for lattice volumes (per node) greater
than 84.
But for a decision in favour of one of these algorithms, another attribute can be studied:
the time spent arranging the data and actually computing the MDA. This comparison
is done in figure 27 on one node and a 84 lattice. The bar plot shows the average
time (with error) for each part of the algorithms (preparation and computation). As
already depicted in figure 26 the total time is almost equivalent on this lattice, but
the first algorithm takes much longer to compute the MDA from the prepared data.
With regard to the following task of implementing the full MDA algorithm, MDA 2 is
favoured. The idea is to split up the two parts of the MDA 2 algorithm, prepare the
data once and compute many MDA’s on this data in order to save time.
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7.2 Full MDA implementation

Detailed comparison of the two
MDA algorithms

Figure 27: The bars show the average time
(with error) spent arranging the
data (preparation) and actually
computing the MDA (computa-
tion).

The full MDA routine11 is basi-
cally done in the same way as al-
ready implemented in LibHadronAnal-
ysis. The task is to take several
LatticePropagators, get their first
and second derivative with respect to
the four spacetime directions and com-
pute the MDA contraction for each
combination of those.
Algorithm 3 shows the procedure.
At first, one LatticePropagator is
taken from the set of all propa-
gators and derived in direction µ.
The result is stored in an addi-
tional LatticePropagator object ∆p1
which can then be rearranged into a
LatticeComplex array data1. This is
used in the following loop (lines 6-9) to
compute the contraction of Dµp1 and
p2. The next part (lines 10-18) is sim-
ilarly computing all combinations of
the second derivativesDνDµp1 and the
original propagators p2. Finally, the
MDA (i.e. MDA 2) contraction is cal-
culated for all pairs of Dµp1 and Dνp2
(lines 19-30).
For the comparison, the GRID and the LibHadronAnalysis implementation - both

compiled with the ICC - are run with socket and NUMA configurations, with different
lattice sizes and on multiple nodes. The task of computing the full MDA is split up
into two parts, the total times for the computation of all derivatives and the total
time of all MDA contractions. In LibHadronAnalysis the derivative is calculated inside
two functions: setPropagator, where the data is prepared for a faster computation
and getDerivative for the calculation of the derivative itself. The GRID benchmark
simply uses the implementation from listing 20.

11Test code fullMDA.cpp is located in the appendix.
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Algorithm 3 Efficient computation of the MDA
1: procedure FullMDA(props) . Input array of propagators
2: for p1 in props do
3: for µ in 1...Nd do
4: ∆p1← Dµp1 . Calculate and store derivative Dµp1
5: data1⇐ ∆p1 . Rearrange the data
6: for p2 in props do
7: data2⇐ p2 . Rearrange the data
8: MDA(data1, data2) . Compute MDA of Dµp1 and p2
9: end for
10: for ν in 1...Nd with ν 6= µ do
11: ∆p2← Dν∆p1 . Calculate and store derivative DνDµp1
12: data1⇐ ∆p2 . Rearrange the data
13: for p2 in props do
14: data2⇐ p2 . Rearrange the data
15: MDA(data1, data2) . Compute MDA of DνDµp1 and p2
16: end for
17: end for
18: end for
19: for p2 in props do
20: for µ in 1...Nd do
21: ∆p1← Dµp1 . Calculate and store derivative Dµp1
22: data1⇐ ∆p1 . Rearrange the data
23: for ν in 1...Nd with ν > µ do
24: ∆p2← Dνp2 . Calculate and store derivative Dνp2
25: data2⇐ ∆p2 . Rearrange the data
26: MDA(data1, data2) . Compute MDA of Dµp1 and Dνp2
27: end for
28: end for
29: end for
30: end for
31: end procedure

1 i n l i n e void derivative ( const LatticePropagator& prop , const ←↩

LatticeGaugeField& u , i n t dir , i n t len , LatticePropagator& ret )
2 {
3 LatticeColourMatrix u_mu = PeekIndex<LorentzIndex>(u , dir ) ;
4 LatticePropagator tmp = adj ( u_mu ) ∗prop ;
5 ret = 0.5 ∗ ( u_mu∗Cshift (prop , dir , len ) − Cshift (tmp , dir ,−len ) ) ;
6 }

Listing 20: Implementation of the derivative in direction dir with length len.
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The benchmarks for a 84 lattice on one node are given in figure 28. The bars show
the total time spent in the derivative and MDA functions (and both together) for the
given configurations. Additionally, the data is presented for the socket and the NUMA
configuration.
As already seen in previous benchmarks, the NUMA setup increases the performance
(especially GRID) by a remarkable factor. While LibHadronAnalysis shows better re-
sults on one task, the difference between the implementations is completely gone for
four tasks. But this is only the case for such small lattices. Increasing the lattice vol-
ume to 164 and computing on four nodes as done in figure 29 shows the strength of
LibHadronAnalysis, for which the calculations can be finished in about half of the
time compared to GRID. Still it has to be considered that the GRID benchmarks
depend on the internal structure of the GRID classes while the implementations in
LibHadronAnalysis are detached from the Chroma classes to fit this special task.

Total time comparison of the full MDA implementations
on one node with a 84 lattice

Figure 28: Comparison of the total time spent in each part of the full MDA calculation
on a 84 lattice. The plot shows the results of the LibHadronAnalysis and
GRID library (both compiled with the ICC) on one node with one and four
tasks.
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Total time comparison of the full MDA implementations
on four nodes with a 164 lattice

Figure 29: Comparison of the total time spent in each part of the full MDA calculation
on a 164 lattice. The plot shows the results of the LibHadronAnalysis and
GRID library (both compiled with the ICC) on four nodes with one and
four tasks per node.
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8 Summary
In this thesis the basics of QCD on the lattice and the architecture of modern hardware
(QPACE 3) and software (GRID) were discussed in order to be able to compare their
performance to currently used libraries (Chroma, QDP++ & LibHadronAnalysis). The
benchmarks were chosen to focus on the main issues of computing the Meson Distri-
bution Amplitude (MDA), such as propagator multiplication and derivatives.
The comparison of GRID and Chroma showed a promising performance for the new
library. For the benchmarks on correlation functions GRID executed the same calcula-
tions in about half of the time compared to Chroma when the ICC compiler and Intel
MPI were used. It also benefited from the NUMA mode which implies the application
of four tasks per node. For the derivative benchmarks GRID could only keep up with
Chroma by means of this NUMA setup.
Those results were then used to design two different approaches for the calculation
of the MDA with GRID’s classes and functions. As both ways resulted in the same
computation time, the one yielding the smaller time spent in the actual computa-
tion sub-routine was chosen. The results were afterwards used for the design of the
full MDA algorithm. Although those implementations perform well under the right
conditions (compilation, execution, etc.), they could not keep up with the optimized
implementations of the LibHadronAnalysis most of the time.
Yet GRID represents an alternative for the outdated Chroma & QDP++ code. The
results of this thesis demonstrate that the right choice of compiler (ICC) and MPI (In-
tel MPI) as well as the application of hardware features such as the NUMA clustering
mode on the Knights Landing processor lead to a significant advantage of GRID over
Chroma for most of the calculations tested.
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Appendix
Test code for the full MDA implementation with GRID

1 #inc lude <Grid/Grid . h>
2 #inc lude <iostream>
3 #inc lude <fstream>
4

5 #de f i n e MYNAMESPACE TIMING // or MDA
6

7 us ing namespace std ;
8 us ing namespace Grid ;
9 us ing namespace Grid : : QCD ;

10

11 i n t nLoops ;
12 std : : vector<int> latt_size (4 ) ;
13 std : : vector<int> mpi_layout (4 ) ;
14 i n t nThreads ;
15 std : : string outFileName ;
16 i n t nProps ;
17

18

19 void error ( double ∗ array , i n t len , double& average , double& error )
20 {
21 // . . .
22 }
23

24 bool processCmdLineArgs ( i n t argc , char ∗∗ argv )
25 {
26 // . . .
27 }
28

29 namespace MDA {
30

31 i n l i n e void derivative ( const LatticePropagator& prop ,
32 const LatticeGaugeField& u , i n t dir ,
33 i n t len , LatticePropagator& ret )
34 {
35 LatticeColourMatrix u_mu = PeekIndex<LorentzIndex>(u , dir ) ;
36 LatticePropagator tmp = adj ( u_mu ) ∗prop ;
37 ret = 0.5 ∗ ( u_mu∗Cshift (prop , dir , len ) − Cshift (tmp , dir ,−len ) ) ;
38 }
39

40 i n l i n e void arrangeData ( const LatticePropagator& prop ,
41 LatticeComplex∗ data , bool gamma )
42 {
43 i f ( gamma ) {
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44 Gamma gamma5 ( Gamma : : Algebra : : Gamma5 ) ;
45 arrangeData ( gamma5∗adj ( prop ) ∗gamma5 , data , f a l s e ) ;
46 } e l s e {
47 LatticeSpinMatrix sMat ( prop . _grid ) ;
48

49 f o r ( i n t c1=0; c1<Nc ; c1++) {
50 f o r ( i n t c2=0; c2<Nc ; c2++) {
51 sMat = peekColour (prop , c1 , c2 ) ;
52

53 f o r ( i n t s1=0; s1<Ns ; s1++) {
54 f o r ( i n t s2=0; s2<Ns ; s2++) {
55 data [ c1∗Nc∗Ns∗Ns+c2∗Ns∗Ns+s1∗Ns+s2 ] = peekSpin (sMat , s1 , s2 ) ;
56 }}
57 }}
58 }
59 }
60

61 i n l i n e void mda ( LatticeComplex∗ a , LatticeComplex∗ b ,
62 LatticeComplex∗ ret )
63 {
64 #pragma omp parallel f o r collapse (4 )
65 f o r ( i n t s1=0; s1<Ns ; s1++) {
66 f o r ( i n t s2=0; s2<Ns ; s2++) {
67 f o r ( i n t s3=0; s3<Ns ; s3++) {
68 f o r ( i n t s4=0; s4<Ns ; s4++) {
69

70 ret [ s1∗Ns∗Ns∗Ns+s2∗Ns∗Ns+s3∗Ns+s4 ] =
71 a [ 0∗ Ns∗Ns+s1∗Ns+s2 ] ∗ b [ 0∗ Ns∗Ns+s3∗Ns+s4 ] +
72 a [ 3∗ Ns∗Ns+s1∗Ns+s2 ] ∗ b [ 1∗ Ns∗Ns+s3∗Ns+s4 ] +
73 a [ 6∗ Ns∗Ns+s1∗Ns+s2 ] ∗ b [ 2∗ Ns∗Ns+s3∗Ns+s4 ] +
74 a [ 1∗ Ns∗Ns+s1∗Ns+s2 ] ∗ b [ 3∗ Ns∗Ns+s3∗Ns+s4 ] +
75 a [ 4∗ Ns∗Ns+s1∗Ns+s2 ] ∗ b [ 4∗ Ns∗Ns+s3∗Ns+s4 ] +
76 a [ 7∗ Ns∗Ns+s1∗Ns+s2 ] ∗ b [ 5∗ Ns∗Ns+s3∗Ns+s4 ] +
77 a [ 2∗ Ns∗Ns+s1∗Ns+s2 ] ∗ b [ 6∗ Ns∗Ns+s3∗Ns+s4 ] +
78 a [ 5∗ Ns∗Ns+s1∗Ns+s2 ] ∗ b [ 7∗ Ns∗Ns+s3∗Ns+s4 ] +
79 a [ 8∗ Ns∗Ns+s1∗Ns+s2 ] ∗ b [ 8∗ Ns∗Ns+s3∗Ns+s4 ] ;
80 }}}}
81 }
82

83 }
84

85 namespace TIMING {
86

87 i n l i n e void derivative ( const LatticePropagator& prop ,
88 const LatticeGaugeField& u , i n t dir ,
89 i n t len , LatticePropagator& ret )
90 {
91 double start = usecond ( ) ;
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92

93 MDA : : derivative (prop , u , dir , len , ret ) ;
94

95 double stop = usecond ( ) ;
96 std : : cout << std : : endl << " de r i v a t i v e time = "
97 << ( stop − start ) /1000000.0 << " s e c s " << std : : endl ;
98 }
99

100 i n l i n e void arrangeData ( const LatticePropagator& prop ,
101 LatticeComplex∗ data , bool gamma )
102 {
103 double start = usecond ( ) ;
104

105 MDA : : arrangeData (prop , data , gamma ) ;
106

107 double stop = usecond ( ) ;
108 std : : cout << std : : endl << " arrangement time = "
109 << ( stop − start ) /1000000.0 << " s e c s " << std : : endl ;
110 }
111

112 i n l i n e void mda ( LatticeComplex∗ a , LatticeComplex∗ b ,
113 LatticeComplex∗ ret )
114 {
115 double start = usecond ( ) ;
116

117 MDA : : mda (a , b , ret ) ;
118

119 double stop = usecond ( ) ;
120 std : : cout << std : : endl << " computation time = "
121 << ( stop − start ) /1000000.0 << " s e c s " << std : : endl ;
122 }
123

124 }
125

126

127 i n t main ( i n t argc , char ∗∗ argv )
128 {
129 i f ( ! processCmdLineArgs (argc , argv ) ) {
130 re turn 1 ;
131 }
132

133 Grid_init(&argc ,&argv ) ;
134

135 /∗ //////////////////
136 // I n i t i a l i z a t i o n //
137 ////////////////// ∗/
138

139 std : : vector<int> simd_layout = GridDefaultSimd (Nd , vComplex : : Nsimd ( ) ) ;
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140 GridCartesian Grid ( latt_size , simd_layout , mpi_layout ) ;
141

142 GridParallelRNG rng(&Grid ) ;
143 rng . SeedFixedIntegers ( std : : vector<int >({1 ,2 ,3 ,4}) ) ;
144

145 i n t derivativeLen = 1 ;
146

147 // Work−around f o r Latt i cePropagator props [ nProps ](&Grid ) ;
148 void ∗ raw_memory =
149 operator new [ ] ( nProps ∗ s i z e o f ( LatticePropagator(&Grid ) ) ) ;
150 LatticePropagator∗ props =
151 s ta t i c_cas t<LatticePropagator∗>( raw_memory ) ;
152 f o r ( i n t i=0; i<nProps ; i++) new( &props [ i ] ) LatticePropagator(&Grid ) ;
153

154 f o r ( i n t i=0; i<nProps ; i++) {
155 random (rng , props [ i ] ) ;
156 }
157

158 LatticeGaugeField U(&Grid ) ;
159 random (rng , U ) ;
160

161 LatticePropagator dProp1 ( props [ 0 ] . _grid ) ;
162 LatticePropagator dProp2 ( props [ 0 ] . _grid ) ;
163

164

165 // Work−around f o r LatticeComplex data1 [Nc∗Nc∗Ns∗Ns ] ( props [ 0 ] . _grid ) ;
166 void ∗ raw_memory2 =
167 operator new [ ] ( Nc∗Nc∗Ns∗Ns ∗ s i z e o f ( LatticeComplex(&Grid ) ) ) ;
168 LatticeComplex∗ data1 = sta t i c_cas t<LatticeComplex∗>( raw_memory2 ) ;
169 f o r ( i n t i=0; i<Nc∗Nc∗Ns∗Ns ; i++)
170 new( &data1 [ i ] ) LatticeComplex(&Grid ) ;
171

172 // Work−around f o r LatticeComplex data2 [Nc∗Nc∗Ns∗Ns ] ( props [ 0 ] . _grid ) ;
173 void ∗ raw_memory3 =
174 operator new [ ] ( Nc∗Nc∗Ns∗Ns ∗ s i z e o f ( LatticeComplex(&Grid ) ) ) ;
175 LatticeComplex∗ data2 = sta t i c_cas t<LatticeComplex∗>( raw_memory3 ) ;
176 f o r ( i n t i=0; i<Nc∗Nc∗Ns∗Ns ; i++)
177 new( &data2 [ i ] ) LatticeComplex(&Grid ) ;
178

179 // Work−around f o r
180 // LatticeComplex r e s u l tBu f f e r [ Ns∗Ns∗Ns∗Ns ] ( props [ 0 ] . _grid ) ;
181 void ∗ raw_memory4 =
182 operator new [ ] ( Ns∗Ns∗Ns∗Ns ∗ s i z e o f ( LatticeComplex(&Grid ) ) ) ;
183 LatticeComplex∗ resultBuffer =
184 s ta t i c_cas t<LatticeComplex∗>( raw_memory4 ) ;
185 f o r ( i n t i=0; i<Ns∗Ns∗Ns∗Ns ; i++)
186 new( &resultBuffer [ i ] ) LatticeComplex(&Grid ) ;
187
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188 // (Work−arounds only nece s sa ry f o r the ICC compi le r )
189

190

191 /∗ ///////////////
192 // Ca l cu l a t i on //
193 // Measurement //
194 /////////////// ∗/
195

196 double timerTime [ nLoops ] ;
197 double timerStart , timerStop ;
198

199 f o r ( i n t i=0; i<nLoops ; i++) {
200 timerStart = usecond ( ) ;
201

202 f o r ( i n t p1=0; p1<nProps ; p1++) {
203

204 const LatticePropagator& prop1 = props [ p1 ] ;
205

206 f o r ( i n t mu=0; mu<Nd ; mu++) {
207

208 MYNAMESPACE : : derivative ( prop1 , U , mu , derivativeLen , dProp1 ) ;
209 MYNAMESPACE : : arrangeData ( dProp1 , data1 , f a l s e ) ;
210

211 f o r ( i n t p2=0; p2<nProps ; p2++) {
212

213 const LatticePropagator& prop2 = props [ p2 ] ;
214

215 MYNAMESPACE : : arrangeData ( prop2 , data2 , t rue ) ;
216 MYNAMESPACE : : mda ( data1 , data2 , resultBuffer ) ;
217 }
218

219 f o r ( i n t nu=0; nu<Nd ; nu++) {
220

221 i f (mu == nu ) cont inue ;
222

223 MYNAMESPACE : : derivative ( dProp1 , U , nu , derivativeLen , dProp2 ) ;
224 MYNAMESPACE : : arrangeData ( dProp2 , data1 , f a l s e ) ;
225

226 f o r ( i n t p2=0; p2<nProps ; p2++) {
227

228 const LatticePropagator& prop2 = props [ p2 ] ;
229

230 MYNAMESPACE : : arrangeData ( prop2 , data2 , t rue ) ;
231 MYNAMESPACE : : mda ( data1 , data2 , resultBuffer ) ;
232 }
233 }
234 }
235
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236 f o r ( i n t p2=0; p2<nProps ; p2++) {
237

238 const LatticePropagator& prop2 = props [ p2 ] ;
239

240 f o r ( i n t mu=0; mu<Nd ; mu++) {
241

242 MYNAMESPACE : : derivative ( prop1 , U , mu , derivativeLen , dProp1 ) ;
243 MYNAMESPACE : : arrangeData ( dProp1 , data1 , f a l s e ) ;
244

245 f o r ( i n t nu=0; nu<Nd ; nu++) {
246

247 i f (mu >= nu ) cont inue ;
248

249 MYNAMESPACE : : derivative ( prop2 , U , nu , derivativeLen , dProp2 ) ;
250 MYNAMESPACE : : arrangeData ( dProp2 , data2 , t rue ) ;
251 MYNAMESPACE : : mda ( data1 , data2 , resultBuffer ) ;
252 }
253 }
254 }
255 }
256

257 timerStop = usecond ( ) ;
258 timerTime [ i ] = timerStop − timerStart ;
259 }
260

261 /∗ //////////////
262 // Evaluat ion //
263 ////////////// ∗/
264

265 double time , timeError ;
266 error ( timerTime , nLoops , time , timeError ) ;
267

268 time /= 1000000 .0 ;
269 timeError /= 1000000 .0 ;
270

271 /∗ /////////////////
272 // Pr int r e s u l t s //
273 ///////////////// ∗/
274

275 i f ( Grid . IsBoss ( ) ) {
276 ofstream file ;
277 file . open ( outFileName , ios : : app ) ;
278 i f ( file . is_open ( ) ) {
279 i n t vol = latt_size [ 0 ] ∗ latt_size [ 1 ] ∗ latt_size [ 2 ] ∗ latt_size [ 3 ] ;
280 file << omp_get_max_threads ( ) << " \ t "
281 << latt_size [ 0 ] << latt_size [ 1 ]
282 << latt_size [ 2 ] << latt_size [ 3 ]
283 << " \ t " << vol << " \ t "
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284 << time << " \ t " << timeError << std : : endl ;
285 file . close ( ) ;
286 } e l s e {
287 std : : cerr << "Unable to open f i l e ! " << std : : endl ;
288 }
289 }
290

291 /∗ ///////////////
292 // Dest ruc to r s //
293 /////////////// ∗/
294

295 f o r ( i n t i=nProps−1; i>=0; i−−) {
296 props [ i ] . ~ LatticePropagator ( ) ;
297 }
298 f o r ( i n t i=Ns∗Ns∗Nc∗Nc−1; i>=0; i−−) {
299 data1 [ i ] . ~ LatticeComplex ( ) ;
300 data2 [ i ] . ~ LatticeComplex ( ) ;
301 }
302 f o r ( i n t i=Ns∗Ns∗Ns∗Ns−1; i>=0; i−−) {
303 resultBuffer [ i ] . ~ LatticeComplex ( ) ;
304 }
305 operator d e l e t e [ ] ( raw_memory ) ;
306 operator d e l e t e [ ] ( raw_memory2 ) ;
307 operator d e l e t e [ ] ( raw_memory3 ) ;
308 operator d e l e t e [ ] ( raw_memory4 ) ;
309

310 Grid_finalize ( ) ;
311 }

Listing 21: fullMDA.cpp
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